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Abstract. This work focuses on generating realistic, physically-based005 005

human behaviors from multi-modal inputs, which may only partially006 006

specify the desired motion. For example, the input may come from a007 007

VR controller providing arm motion and body velocity, partial key-point008 008

animation, computer vision applied to videos, or even higher-level mo-009 009

tion goals. This requires a versatile low-level humanoid controller that010 010

can handle such sparse, under-specified guidance, seamlessly switch be-011 011

tween skills, and recover from failures. Current approaches for learning012 012

humanoid controllers from demonstration data capture some of these013 013

characteristics, but none achieve them all. To this end, we introduce014 014

the Masked Humanoid Controller (MHC), a novel approach that applies015 015

multi-objective imitation learning on augmented and selectively masked016 016

motion demonstrations. The training methodology results in an MHC017 017

that exhibits the key capabilities of catch-up to out-of-sync input com-018 018

mands, combining elements from multiple motion sequences, and com-019 019

pleting unspecified parts of motions from sparse multimodal input. We020 020

demonstrate these key capabilities for an MHC learned over a dataset of021 021

87 diverse skills and showcase different multi-modal use cases, including022 022

integration with planning frameworks to highlight MHC’s ability to solve023 023

new user-defined tasks without any finetuning. 1024 024

Keywords: Humanoid Motion Generation · Multimodal · Imitation025 025

1 Introduction026 026

Physically simulated humanoid characters have the potential to generate natural027 027

looking and realistic human motions and behaviors for a variety of applications028 028

ranging from video games, robotics, virtual/augmented reality, to digital avatars.029 029

However, directable and natural motion generation for these physically unstable,030 030

high-dimensional characters corresponds to a challenging control problem requir-031 031

ing precise coordination of joint-level commands [14,28]. One solution is to lever-032 032

age motion capture (MoCap) data, which provides detailed pose information for033 033

demonstrations of real human motion that are relevant to an application. We034 034

can then attempt to train a motion generator that can be directed to imitate the035 035

individual motion demonstrations as well as combinations or transformations of036 036

these motions. This data-driven imitation-learning approach offers the potential037 037

for producing directable behavior while ensuring human-like motion quality.038 038

1 Anonymous project webpage: https://mhc404.github.io/mhc404/.
Source code will be released upon acceptance of the paper.

https://mhc404.github.io/mhc404/
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Fig. 1: Showcases generated human motions from multi-modal inputs: (A) VR device, (B) joystick
controller, (C) video, and (D) text. Our proposed method, Masked Humanoid Controller (MHC),
can generate physically realistic motions from a wide variety of muli-modal directives.

A key aim of our work is to train a motion generator that can be directed039 039

through multiple input modalities such as video, text, and VR controllers as well040 040

as high-level goal specifications, without the need for fine-tuning. As an example,041 041

given limited demonstrations of running and stationary waving, we should be042 042

able to generate motions for a new behavior “running while waving” by directing043 043

the generator with high-level waypoints for navigation along with arm motion044 044

directives. Importantly, such waypoint directives are sparse in that they do not045 045

specify the joint-level details of the desired motion. Thus, the generator must be046 046

able to automatically fill-in-the-blanks to achieve natural looking motions that047 047

satisfy the sparse directives. In addition, the generator must be able to recover048 048

from failures, smoothly switch between different motions, and blend motions049 049

into novel combinations. We identify these crucial capabilities as: Catch-up,050 050

Combine and Complete - (CCC) (Fig. 2).051 051

The Catch-up capability is required to support transitioning between differ-052 052

ent motion directives. This refers to resynchronizing to the directed motion from053 053

states that are currently inconsistent with that motion, e.g., failure states. This054 054

allows initiating motions from arbitrary fallen poses and seamlessly transitioning055 055

between different reference motions mid-way through execution. The Combine056 056

capability involves imitating novel combinations of upper and lower body move-057 057

ments by blending segments from different motion demonstrations; for instance,058 058

walking while waving. Finally, the Complete capability allows for sparse, under-059 059

specified guidance signals; such as missing certain joint information, by tracking060 060

available cues and implicitly filling in missing details. Together, these capabilities061 061

enable multimodal directives across MoCap, text, video, joystick and VR. Addi-062 062

tionally, they facilitate defining finite state machines to generate motions using063 063

high level user-specifications, as well as integration with data-driven planners to064 064

generate motions that achieve user-specified high-level goals.065 065

To enable the CCC capabilities under a unified framework, we present the066 066

Masked Humanoid Controller (MHC). In summary, our main contributions are067 067
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Fig. 2: Shows generated motions that illustrate the CCC capabilities. From left to right: MHC is
able to generate motions that (1) adjust and catchup starting from an out-of-sync pose, (2) imitate
a target directive that combines upper and lower body sub-segments from different motions, and
(3) complete the motion from under-specified directives as indicated by missing target outlines.

three-fold: (1) We identify three key missing capabilities in current humanoid068 068

controllers - catch-up, combine and complete - that are jointly-necessary for069 069

adaptable behaviors, (2) We propose the Masked Humanoid Controller (MHC)070 070

- a novel multi-objective imitation learning framework that utilizes augmented071 071

and masked demonstrations to enable these capabilities, (3) We integrate MHC072 072

with planning frameworks, enabling complex goal-driven behaviors using finite073 073

state machines (FSMs) and data-driven planners (DAC-MDPs [25]). The CCC074 074

capabilities are extensively validated by training an MHC on a diverse dataset075 075

of 87 motor skills [22]. Additionally, we showcase MHC’s zero-shot planning076 076

capabilities using a wide range of finite state machines as well as case studies on077 077

integration with DAC-MDPs for motion generation adhering to high-level goals.078 078

2 Related Work079 079

Learning from MoCap Data: Leveraging MoCap data enables controllers to080 080

acquire complex behaviors with human-like motion quality. However, large and081 081

diverse MoCap datasets presents challenges including scalable distillation and082 082

ensuring fluid transition between skills. Initial works train single-clip policies to083 083

mimic individual behaviors using tracking rewards [4,19,23] or adversarial losses084 084

[7, 11, 17, 21, 32]. However, distilling these into a multi-clip controller remains085 085

computationally prohibitive [28]. A more scalable alternative is to directly learn086 086

a multi-clip policy learning via reinforcement learning with tracking objectives087 087

[5,14,16,20,28,30,31]. However, tracking rewards alone is not enough to ensure088 088

smooth transitions between skills and failure recovery. Recent works augment089 089

training with adversarial losses to encourage natural motions during transitions090 090

[20, 27] or define an explicit fail state recovery policy [14].091 091

Combination of motions: Recent works have explored imitating combined092 092

motions, but require training individual policy for each new behavior pair [1,093 093

12, 33]. Additionally, they rely on full motion oversight, lacking adaptability to094 094

partial guidance. On the completion front, some kinematic models can synthesize095 095

motions despite missing information [3, 29]. However, these controllers are not096 096

grounded in physics, restricting their application.097 097

Under-specified Control: Intuitive modalities like language, video, and098 098

VR provide important yet often under-specified means to direct motor skills.099 099

Existing works map some of these modalities to embedding spaces [10,11,26,34]100 100

or key joint poses [13, 14]. However, they handle a predefined sparisty types;101 101
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adapting to new sparsity specifications like VR require expensive retraining [2,6].102 102

While ambiguity is inherent in language and image-conditioned policies [8, 34],103 103

fine-grained control remains difficult as they do not allow low-level granularities104 104

like joint-level guidance. Overall a gap persists in controllers that can handle105 105

partial, sparse guidance with precision across modalities. Closing this gap can106 106

enable more intuitive control of reusable motor behaviors.107 107

Downstream Planning: The acquired low-level control skills can sup-108 108

port downstream tasks via a wide range of approaches including supervised109 109

fine-tuning for specialized behaviors [34], reinforcement learning for new ob-110 110

jectives [5, 13, 18, 20], model predictive control for short-term horizons [9], and111 111

finite state machines that encode behavioral logic [27]. However, supervised fine-112 112

tuning remains restricted in flexibility to new tasks while reinforcement learn-113 113

ing lacks sample efficiency whereas model predictive formulations are limited to114 114

short planning horizons. Additionally, the range of possible finite state machines115 115

largely depend on the flexibility of the underlying low-level controller. One solu-116 116

tion is the use of data-driven planners like DAC-MDPs [25] which compile static117 117

experiences into approximated MDPs for fast optimization. While these meth-118 118

ods enable zero-shot generalization, their integration with learned reusable motor119 119

skills remains relatively unexplored. Overall, leveraging low-level controllers to120 120

swiftly accomplish high-level goals remains an open challenge.121 121

3 Problem Formulation122 122

Given a dataset of human motion demonstrations, our objective is to develop123 123

a motion generator that can produce directable, realistic combinations of those124 124

and similar motions in simulated physics environments. By directable we mean125 125

that the generator can be provided with directives that specify properties of126 126

the desired future motion. For example, the most detailed directive is to specify127 127

the exact future positions and velocities of each humanoid joint. Alternatively128 128

an under-specified directive might provide just the desired hand positions in the129 129

future time window or just the torso velocity. For such under-specified directives,130 130

the motion generator should produce motion that is consistent with the provided131 131

directive, while also constraining to the space of natural motions. By allowing for132 132

under-specified directives we can support many input modalities for describing133 133

motion. For example, MoCap data provides fully-specified directives whereas134 134

joystick input may only specify the root velocity and arm motion.135 135

More formally, a motion is a sequence q1:H of multi-channel poses for a hu-136 136

manoid with J joints. Each pose is a tuple qi = (qr, qθ, ql, qg), where qr specifies137 137

the position, orientation, linear and angular velocity of the root joint, qθ ∈ RJ×6138 138
2 is the 3D joint rotations, ql ∈ RJ×3 is the local joint positions relative to the139 139

root pose, and qg ∈ RJ×3 is the global joint position in the world coordinates.140 140

Motion directives are used to specify constraints on a desired motion to be141 141

generated. Specifically, in this work, a motion directive d is defined as a masked142 142

motion sequence represented by d = (q̂1:H , I1:H), where q̂1:H is a motion and143 143

I1:H is a sequence of binary masks such that Ii indicates which dimensions of144 144

2 we use the 6 DoF rotation representation for orientation [20].
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Fig. 3: Illustrates the architecture and training details of the MHC framework, which consists of a
controller and an ensemble of discriminators. Here the controller is trained to follow an augmented
set of masked directives derived from the provided MoCap dataset. The controller gets feedback
via tracking objective and style rewards generated by the ensemble of discriminators. Together they
enable a directable policy to generate physically realistic motions capable of catching up, combining
primitives, and completing motions from under-specified directives.

pose qi are selected as motion constraints. For example, a directive that only145 145

specifies future hand positions would select only the dimensions corresponding146 146

to hand positions in q̂l.147 147

In this work, we focus on generating motions that are dynamically consis-148 148

tent with a physics-simulation environment. In particular, it is not sufficient to149 149

simply generate kinematic pose sequences that “look right". For this purpose150 150

we consider motion generators that dynamically control the actuators of physi-151 151

cally simulated humanoids. Specifically, as shown in Fig. 3 our motion generator152 152

takes as input the pose of the humanoid qt at time t and the current motion153 153

directive (q̂t+1:t+H , It+1:t+H), which specifies the desired motion for the next H154 154

steps. The output of the generator at gives the set points for each joint of the155 155

simulated humanoid. These set points are then provided to a PD controller with156 156

fixed gains, which produces actuator torques for the physics simulator. Since,157 157

our motion generator controls a physical system and is conditioned on masked158 158

motion directives, we call it the Masked Humanoid Controller (MHC).159 159

In order to learn an MHC we assume access to a dataset of reference motions160 160

M, which encompasses the types of motions that are needed for the applica-161 161

tion goals. Our goal is to learn an MHC capable of producing motions that are162 162

combinations and in-plane rotations of motions in M. Specifically, we consider163 163

combinations of upper and lower body motions in M and denote the augmented164 164

dataset of all such combinations as M+. Note, however, that our learning frame-165 165

work can be instantiated for any meaningful type of combination. In addition,166 166

the MHC should be able to smoothly switch between motion sub-segments in167 167

M+, even when switching to an out-of-sync motion, which requires “catching168 168

up". Note that ideally, the learned generator will generalize beyond motions in169 169

M+, but the degree of generalization is primarily an empirical question.170 170
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Fig. 4: Highlights the potential applications of MHC. [Top] The selective masking of the target
directive allows MHC to represent various modalities of motion data under a single framework.
These multi-modal inputs include MoCap, full or occluded video, joystick, VR controller among
others. [Bottom] Similarly selective masking of target directive also allows us to treat the guiding
signal itself as abstract actions. This enables straightforward integration with Finite State Machines
and Data Driven Planning to allow zero-shot motion generation for higher-level task specifications.

Finally, the learned MHC should be able to produce motions based on dif-171 171

ferent multi-modal sources of motion data. Each type of source will correspond172 172

to a particular type of directive whose mask identifies the motion constraints173 173

provided by that source. Figure. 4 illustrates the types of inputs and corre-174 174

sponding directive masks we consider in this work. For example, given human175 175

motion video, tracking software can be used to generate a directive (q̂1:H , I1:H)176 176

such that q̂ only has components for q̂g and I selects only those components.177 177

Additionally, when joints are occluded, I only selects the un-occluded joints.178 178

4 Masked Humanoid Controller179 179

Because the MHC involves solving a complex physical control problem without180 180

supervision for the low-level actions, we formulate MHC training as reinforce-181 181

ment learning (RL). Training proceeds through episodes, where each episode182 182

initializes the humanoid in a physical environment with a specific directive. The183 183

reward during an episode indicates how well the motion matches the target di-184 184

rective and reflects natural motion. The goal of RL is to learn an MHC that185 185

produces high expected reward. We outline our approach for generating training186 186

episodes and defining the reward function below. Implementation details of the187 187

neural network models and RL training are in the Appendix.188 188

4.1 Training Episodes189 189

Our goal is to create a distribution over episodes that will require the MHC to190 190

switch between motions in M+ based on directives corresponding to multimodal191 191

inputs. If an MHC achieves high reward on such a distribution, then it will have192 192

the desired CCC properties. Each episode is defined by a randomly sampled pair193 193

of initial humanoid pose and target directive.194 194

Initial Pose Distribution: The initial pose distribution is a mixture of a195 195

uniform distribution over poses in M+ and a distribution of fallen humanoid196 196

poses pfall(q), where the weight of pfall is 0.1 in our experiments. This choice197 197



ECCV 2024 Submission #7885 7

forces the MHC to learn catchup to out-of-sync target directives, including recov-198 198

ery from fallen humanoid states. In addition, we apply a random in-plane rotation199 199

when generating a pose so that the MHC is robust to orientation changes.200 200

Target Directive Distribution: For each episode we generate a target di-201 201

rective (q̂1:L, I1:L), where L is the length of the episode. The motion q̂1:L for202 202

the directive is generated by concatenating random length subsequences drawn203 203

from M+. In our experiments, L = 300, corresponding to 10 seconds, and each204 204

sub-sequence length is uniform in the range from 120 to 240. This type of con-205 205

catenation generally results in sharp and inconsistent motion transitions, forcing206 206

the MHC to learn catchup behavior. In addition, we also apply a random in-plane207 207

rotation to each sub-sequence so that the MHC is robust to orientation changes.208 208

The directive mask I1:L for an episode is generated by generating a mask I1209 209

for the first time step and using that mask for all other time steps (i.e. It = I1210 210

for all t). We employ two types of masking: channel-level and joint-level mask-211 211

ing (Fig. 4). For, channel level masking, one or more of the available channels212 212

(q̂r, q̂θ, q̂l, q̂g) are selectively masked. The different channel combinations that213 213

we randomly choose between each episode are detailed in Fig. 4. For example,214 214

all channels except q̂g can be masked to represent the joint keypoint modality215 215

that can be generated from video via computer vision. Channel level masking216 216

allows us to represent modalities like video tracking, text2motion models, pro-217 217

prioception, and joystick controllers.218 218

Joint-level masking is a secondary level of masking that can be further ap-219 219

plied to the joint position channels (ql, qg). Here we sample a percentage in220 220

[0, 100] and randomly select that percentage of joints to mask out from the tar-221 221

get directive. This allows us to emulate partially occluded video motions as well222 222

as VR controllers which only have a limited number of keypoint sensors. In our223 223

experiments we sample masks by first randomly selecting a channel level mask224 224

followed by a 50% chance of also applying joint-level masking.225 225

4.2 Reward Design226 226

The RL training objective is to maximize the expected discounted episodic re-227 227

ward denoted by E
[∑L

t=1 γ
t−1rt

]
where γ ∈ (0, 1] is the discount factor and rt228 228

is the reward at timestep t. We define the reward at each step as the sum of a229 229

tracking reward rtrt , which encourages agreement with directives, a style reward230 230

rst
t , which encourages natural looking motions, and an additional energy cost ct,231 231

which encourages smooth motions: rt = 0.5rtrt + 0.5rst
t − ct.232 232

Tracking Reward: The tracking reward is defined to prefer generated mo-233 233

tions based on how well they agree with the episode’s directive at each time step.234 234

We find that learning is accelerated by using a reward function that prioritizes235 235

learning coarse motion characteristics before focusing on finer motion details. In236 236

particular, we define four reward terms in order of priority rh
t , r

o
t , r

v
t , r

l
t corre-237 237

sponding to matching the directive for root height, root orientation, root velocity238 238

and joint Euler coordinates, respectively. At each time step, a term is activated239 239

only if the higher priority rewards are above a threshold of 0.9. Specifically, the240 240

tracking reward function is given by: rtrt = rh
t + ro

t + rv
t + rl

t241 241
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rht = e−mh·8||qht −q̂ht ||2 (1)242 242

rot = I(rht > 0.9) · e−mo·||d(qot −q̂ot )||2 (2)243 243

rvt = I(rot > 0.9) · e−mv·||qvt −q̂vt ||2 (3)244 244

rlt = I(rvt > 0.9) · 1∑
j∈J

mj

∑
j∈J

e−mj ·40||q
j
t−q̂

j
t ||2 (4)245 245

where J is the set of all joints, and mh, mo, mv, mj are equal to 0 if the246 246

corresponding reward component depends on the pose information not selected247 247

by the episode’s directive mask, and otherwise equal to 1. Thus, reward terms248 248

not relevant to the directive do not affect preferences over the generated motion.249 249

Style Reward: If only tracking reward is used for RL, we find that training250 250

can be difficult and the resulting MHC generates unnatural motions for under-251 251

specified directives and when a directive is widely out-of-sync with the current252 252

robot pose. The style reward addresses this issue by drawing on the framework253 253

of adversarial imitation learning [21]. The key idea is to train a discriminator254 254

function that attempts to discriminate between natural motions that come from255 255

the training set M+ and motions produced by the current motion generator. A256 256

reward function can then be defined that gives higher reward for motions the257 257

discriminator ranks as more natural.258 258

The most common adversarial approach would be to learn a single discrim-259 259

inator over the full poses of the humanoid. However, an issue with this is that260 260

the style reward will be low for motions that are novel combinations of natural261 261

motions from different parts. For example, raising and lowering both arms while262 262

hopping is a motion that we may want to generate, but the discriminator may263 263

not find natural with respect to M+ due to the unique combinations. For this264 264

reason we consider a multi-part style reward, inspired by [1], with a distinct dis-265 265

criminator for different body parts. Specifically, we create 5 sets of joints from266 266

the whole body: J1J2,J3,J4, and J5 corresponding to upper right, upper left,267 267

root, lower body, and full body, respectively. During RL training a discriminator268 268

Dϕk
is trained for each part set Jk, conditioning only on joint information in269 269

Jk. Training is done continuously throughout RL by sampling a pair of motions,270 270

one positive motion from M and one negative motion generated by the current271 271

MHC, and updating the parameters of each discriminator using the regularized272 272

loss function from [1,21]. In our implementation, the input to the discriminators273 273

is a motion sub-sequence of length 10 so that the discriminator takes temporal274 274

dependencies into account. The corresponding reward component at time step t275 275

for discriminator k is − log(1−Dϕk
(qkt−10:t). The overall style reward rst, is the276 276

average of these components across discriminators.277 277

Energy Cost: is defined to penalize large changes in the action across278 278

timesteps and large torques. Specifically, the cost at time t is given by279 279

ct =
∑
j∈J

0.01 · ||ajt − ajt−1||1 + 0.0002 · ||τ jt ||1 (5)280 280
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Fig. 5: Illustrates generated motions corresponding to key CCC capabilities of MHC. The simulation
(left) displays key-frames of humanoid following different motion directives (right). From top to
bottom the simulated humanoid (A) follows an imitation target, (B) transitions from falling-down
position to catch-up to the target directive, (C) imitates motion directive that combines upper-body
and lower-body movements from distinct motions (D) completes the motion using only 3D joint
positions of the head, hands and feets.

where ajt is the action (set point) at time t for joint j and τ jt is the torque applied281 281

to joint j. The inclusion of this penalty is critical for avoiding high-frequency282 282

jitter, especially of the foot.283 283

5 Motion Generation for Higher-Level Tasks284 284

While a wide variety of motions can be specified via masked directives, gener-285 285

ating motions for higher-level tasks requires a planned sequence of directives.286 286

For example, a simple task of moving to a target goal location, requires motions287 287

that locomote to the location while avoiding obstacles and stopping at the goal.288 288

One prior approach to specifying higher-level tasks [27] is to hand-code a finite-289 289

state machine (FSM) that selects different directives based internal states that290 290

can change based on environment observations. While this can be effective, the291 291

hand-coding process can be tedious and impractical for complex tasks.292 292

To address this issue we propose to integrate the learned MHC with a data-293 293

driven planning framework that allow for automatically generating a potentially294 294

large FSM for a user-defined higher-level task. Instead, of specifying the FSM295 295

directly, the designer specifies: 1) a reward function r∗ and optimization objec-296 296

tive (e.g. discounted total reward) corresponding to the higher-level task, 2) the297 297

set of possible directives A for the MHC that can be used as dynamically se-298 298

lected actions to achieve the task, and 3) a mask over pose variables S defining299 299

a state abstraction used to form the FSM states. For example, the user may300 300

specify a reward based on the distance to a goal location, specify directives cor-301 301

responding to root velocity and orientation commands, and a state abstraction302 302

corresponding to localized goal location. Alternatively if certain types of arm303 303
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Table 1: Results for the ASE baseline, the MHC, and MHC ablations for the imitation, catchup
and combine experiments. The ablation differs across expeirments. For imitation we remove the
style reward, for catchup we remove random pose initialization, and for combine we remove target
motion augmentation (i.e. training on M rather than M+. The MHC outperforms the ASE baseline
for all tasks across the Reallusion dataset MReal and ASE rollout dataset MASE . The ablation
experiment demonstrate that each component is crucial and jointly enable the CCC capabilities.

Method

Imitation Catchup Combine

MReal MASE MReal MASE MReal MASE

mpjpe ↓ Suc ↑ mpjpe ↓ Suc ↑ mpjpe ↓ Suc ↑ mpjpe ↓ Suc ↑ mpjpe ↓ Suc ↑ mpjpe ↓ Suc ↑

ASE [20] 123.51 0.6 100.28 0.77 125.96 0.55 102.5 0.7 210.75 0.17 197.94 0.25

MHC (Ours) 51.05 0.92 56.23 0.97 59.24 0.89 63.46 0.98 95.09 0.48 60.95 0.78

MHC (abl) 552.25 0.0 555.7 0.0 66.23 0.3 87.1 0.17 103.73 0.44 69.68 0.78

motions were required for the task, directives and the state abstraction could304 304

additionally include selected sub-motions for the arm joints.305 305

We follow the data-driven planning framework of DAC-MDPs [25] which uses306 306

data collected from a dynamic system to construct and solve a Markov Decision307 307

Process (MDP) as shown in 4. In our application, we collect trajectory data308 308

by randomly initializing the MHC in the environment and executing random309 309

sequences of directives from A each trajectory stores the state abstraction at310 310

each time step along with the selected action directive. The DAC-MDP solution311 311

is a control policy that specifies for each abstract state, which directive in A312 312

to execute. We refer the reader to [25] for DAC-MDP details. Importantly, the313 313

CCC properties of the MHC allow it to robustly execute the high-level actions314 314

selected by the DAC-MDP. It is also worth noting that this approach is zero-shot315 315

in the sense that no fine-tuning or RL training is required to address a new high-316 316

level task. Rather, the DAC-MDP framework uses efficient optimal planning to317 317

produce its solutions.318 318

6 Experiments319 319

We conduct experiments to empirically validate MHC’s key capabilities to im-320 320

itate a wide range of motion directives that necessitate the key capabilities of321 321

imitation, catchup, combination and completion (Fig. 5). We then showcase mo-322 322

tion generation from target directives derived from multiple modalities (Fig. 7)323 323

and case studies on motion generation for higher-level tasks. (Fig. 8).324 324

Datasets and Baselines: We train our MHC on a Reallusion MoCap325 325

dataset [20,22] of 87 motion clips (MReal). We also generate a test set MASE of326 326

87 motions using a pre-trained ASE controller [20] by initializing it in a random327 327

pose and selecting a sequence of random ASE skills. We also use this pre-trained328 328

ASE controller as a state-of-the-art baseline for the Reallusion dataset. Specifi-329 329

cally, ASE includes an encoder that maps target motions to skills, which allows330 330

us to evaluate ASE on fully specified directives. Note that, unlike MHC, the ASE331 331

controller does not support under-specified directives. Thus, in our comparisons,332 332

we always provide ASE with directives that specify all pose information.333 333

Metrics In our experiments we evaluate how well a generated motion matches334 334

the specified motion directive. As a metric of motion similarity we use the com-335 335

monly used mean per-joint position error EMPJPE (in mm), which averages the336 336
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Fig. 6: (Left) Performance across different channel-level masks. We find that the MHC trained with
directive masking retains its imitation performance across different variants of channel masks in
contrast to the MHC trained without masking. (Right) Performance across different percentages
of joint masking (0% to 75%). We see that the MHC shows stable performance as the amount
of masking increases compared to the MHC trained without joint-level masking. We also see that
the MHC significantly outperforms ASE, even though ASE is provided fully-specified (unmasked)
directives. The performance of ASE varies across masking levels because we only evaluate the metric
over unmasked joints.

root relative error of each humanoid joint. Inspired by UHC [15], we also measure337 337

the success rate (Succ) defined as following the reference motion with < 10% of338 338

failed frames, where a failed frame is one where maximum joint error is > 1m.339 339

For under-specified directives that mask joints, the success rate and EMPJPE is340 340

measured only using the selected joints.341 341

6.1 CCC Capabilities342 342

Imitation: We measure the imitation quality of the MHC and ASE baselines343 343

across both datasets MReal and MASE . Figure 5A illustrates an example of344 344

the MHC imitating a target directive. To assess imitation performance, we use345 345

fully-specified target directives corresponding to the training and testing mo-346 346

tions. The initial humanoid pose is set to match the initial pose of the target347 347

directive and then the controllers generate the motion using a sliding window348 348

lookahead of the target directive. As presented in Table 1, MHC demonstrates349 349

superior performance compared to ASE on both datasets, as evidenced by the350 350

lower EMPJPE and higher success rate metrics. These results suggest that the351 351

MHC exhibits better imitation fidelity compared to the ASE baseline. We also352 352

consider an MHC ablation where we remove the sytle reward during training,353 353

using only tracking rewards and energy costs. Table 1 shows that the ablated354 354

MHC, denoted MHC(abl), fails to learn effective motion generation, even from355 355

these fully-specified directives. This finding underscores the critical role played356 356

by the style reward term in the successful training of MHC.357 357

Catchup: To assess the catchup capabilities we initialize the MHC or ASE in358 358

a random pose drawn from the training or testing sets. We then run the motion359 359

generator with a directive that is derived by concatenating a pair of random sub-360 360

sequences from the training or testing sets. Figure 5B showcases an example of361 361

the MHC successfully catching up to a target motion from a randomly initialized362 362

fallen pose, highlighting its adaptability and resilience. Table 1 presents a com-363 363

parative analysis of MHC against ASE baseline and an ablation trained without364 364

random pose initialization. The evaluation is performed across both the training365 365

and test datasets, with the MHC consistently achieving superior EMPJPE and366 366
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Fig. 7: Illustrates qualitative results using keyframes for motion generation under multi-modal inputs
such as (A) VR headset and controllers, (B) joystick controllers, (C) 3D joint positions derived from
video and (D) text-to-motion generator. This highlights the versatility of MHC and its applications
for motion generation directed by various modalities that may be noisy, under-specified.

success rates compared to the baselines. Note that since catchup inherently in-367 367

volves non-synchronization with the directive, we loosen the success criteria so368 368

that a trial is considered successful if < 25% of the frames fail. These results369 369

provide strong evidence for MHC’s enhanced capability in failure recovery and370 370

smooth catchup transitions, even when starting from perturbed states.371 371

Combine: We now evaluate the ability to handle directives that combine up-372 372

per and lower body joint subsets, as outlined in Section 4. Here the target direc-373 373

tive is generated by randomly sampling a pair of motion trajectories from either374 374

the training or testing sets and combining the upper and lower body movements375 375

from each motion. Figure 5C illustrates an example of the MHC successfully imi-376 376

tating a target directive derived by combining upper and lower-body movements377 377

from distinct motion sequences. Table 1 presents the quantitative results for im-378 378

itating combined motions, where the motion pairs are sampled from MReal and379 379

MASE . We see that the MHC consistently outperforms both the ASE baseline380 380

and an ablated version of MHC. Here the ablation is trained without data aug-381 381

mentation i.e. M instead of M+. The ablation highlights the importance of data382 382

augmentation in enabling MHC to effectively work with directives that combine383 383

different body sub-segments from distinct motions.384 384

Complete: Finally, we evaluate MHC’s ability to generate motions from385 385

under-specified target directives. We do this by repeating the setup for imita-386 386

tion task, this time with under-specified directives. As described in Section 3,387 387

different choices of under-specification relate to different motion-data modalities.388 388

We start by evaluating channel level masks were we specify one of the following:389 389

full pose information (q̂r+q̂θ+q̂l), pro-prioception (q̂r+q̂θ), pro-prioception with390 390

forward kinematics (q̂r+q̂l), and global joint keypoint positions q̂g. Figure 6 (left)391 391
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Fig. 8: (A) Key frame visualization of FSMs for Go-To-Location task. FSM A1 (blue) generates a
motion of walking towards the goal position while doing right sword slashes and ultimately falling
down and recovering on reaching the goal. FSM A2 (green) generates a motion that swings its sword
as it crouch-walks towards the goal while facing the other away. and swinging the sword along the
way. (B) Visualization of FSM produced by DAC-MDP using original/negated reward functions for
Go-To-Location task. FSM B1 (blue) uses original reward function and reliably reaches the goal. FSM
B2 (green) uses negated reward function and avoids the goal. (C) Visualization of FSM produced
by DAC-MDP for different discount factors. FSM C1 (blue) uses small discount factor and plans
for short horizon. The generated motion swings the sword to get the immediate reward followed
by episode termination. FSM C2 (green) use larger discount factor and plans for long horizon. The
generated motion moves towards the goal to collect larger long-term reward.

shows that MHC can perform well for these channel level under-specification of392 392

directives. In a second experiment, we consider joint-level masking where we393 393

progressively mask 0% to 75% of the joints in q̂g. These directives correspond394 394

to potentially occluded keypoint trajectories from Video. Figure 6 (right) shows395 395

that the MHC can retain its performance and generate motions with signifi-396 396

cantly lower EMPJPE as compared to the ASE baseline. This is notable since397 397

ASE is provided with all of the joint information, since it does not support398 398

under-specified directives. Finally, we condider an MHC ablation where we train399 399

without joint-level masking. We see that the ablated version performs poorly as400 400

the amount of masking increase. Figure 5D illustrates an example of the MHC401 401

successfully imitating an under-specified target motion where only the 3D posi-402 402

tions for the head, feet, and hands are provided. This highlights MHC’s ability403 403

to generate realistic motion even from a diverse set of under-specified directives.404 404

6.2 Multi-Modal Directives405 405

We qualitatively evaluate the MHC for different kinds of real-world input modal-406 406

ities for motions that the MHC was never trained on. We explore the following407 407

modalities: virtual reality devices, joystick controllers, 3D joint positions ex-408 408

tracted from videos, and text-to-motion generation. In our experiments, we uti-409 409

lized the Meta Quest 2 VR system, comprising a headset and two controllers,410 410

to gather the orientation and 3D positions of both the headset and controllers411 411

(Fig. 7A). For joystick-based inputs, an Xbox controller was employed to manip-412 412

ulate the speed and direction of the velocity (via the left joystick and trigger),413 413

root orientation and height (via the right joystick and trigger), as illustrated414 414

in Fig. 7B. The estimation of 3D poses from video footage was achieved using415 415

MeTRAbs [24] (Fig. 7C), while generation of kinematic human motions from tex-416 416

tual descriptions was achieved using T2M-GPT [35] (Fig. 7D). We find that the417 417

learned MHC is versatile and can generate natural motions from under-specified418 418
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directives derived from these input modalities. These results have important im-419 419

plications for real-world applications, where motion capture data may often be420 420

incomplete or noisy due to occlusions or sensor limitations.421 421

6.3 Higher-level Task Specification422 422

We provide demonstrations of motion generation for higher-level tasks via inte-423 423

gration of the MHC with FSMs and DAC-MDPs. For FSM integration we con-424 424

sider the task of navigating to a specified target goal location while executing425 425

different locomotion styles, such as running or crouch-walking, and performing426 426

various finishing moves, like taunting or falling down as shown in Figure 8A. We427 427

hand-coded simple FSMs to achieve these tasks, where each state of the FSM428 428

selects an appropriate directive for the MHC to execute. This includes under-429 429

specified directives corresponding to joystick commands and a fully-specified430 430

directives corresponding to the finishing moves.431 431

We integrate the MHC with DAC-MDPs by constructing a DAC-MDP using432 432

a dataset collected by generating motions using the MHC with directives derived433 433

from random joystick commands. The first high-level task (Figure 8B) is to434 434

simply reach a goal location. To do this, we define a DAC-MDP reward function435 435

that provides a reward at each step that is larger as the humanoid gets closer436 436

to the goal. The reward at the goal is a maximum of 1. The resulting FSM437 437

produced by solving this DAC-MDP results in motions that reliably reach the438 438

goal. To illustrate the zero-shot capabilities, we next give the DAC-MDP the439 439

negation of the first reward function, which should lead the agent to avoid the440 440

goal location. Figure 8B illustrates the resulting desired behavior.441 441

Finally, we illustrate the higher-level reasoning capabilities afforded via the442 442

DAC-MDP integration. As illustrated in Figure 8C, we adjust the reward func-443 443

tion and DAC-MDP termination condition so that the humanoid receives a pos-444 444

itive reward for swinging the sword, which immediately terminates the episode.445 445

We then use the DAC-MDP to produce an FSM for a large discount factor 0.999446 446

and a smaller discount factor 0.9. The large/small discount factors encourage447 447

planning over a long/short horizon. The best short horizon plan is to simply get448 448

the immediate reward of swinging the sword and then ending the episode, while449 449

the long-horizon plan is to instead go to the goal and collect the larger long-term450 450

reward. This is exactly the behavior produced by the two FSMs.451 451

7 Summary452 452

We highlighted three capabilities, Catchup, Combine, and Complete, that are453 453

jointly necessary for practical applications of physically-realistic motion gener-454 454

ation. Our proposed Masked Humanoid Controller (MHC) is the first motion455 455

generator that achieves all three capabilities. This RL-based approach for train-456 456

ing is highly versatile and can be applied to any available motion-capture dataset457 457

and multi-modal input directives. Importantly, the MHC is a dynamic motion458 458

generator in the sense that it actively generates motion in response to the current459 459

environment conditions. Finally, we demonstrated a straightforward integration460 460

of the MHC with data-driven planning to allow for zero-shot motion generation461 461

for higher-level tasks.462 462
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